Reduced-bias estimators for the Distortion Risk Premiums for Heavy-tailed distributions

نویسندگان

  • El Hadji Deme
  • Gane Samb Lo
چکیده

Estimation of the occurrence of extreme events actually is that of risk premiums interest in actuarial Sciences, Insurance and Finance. Heavy-tailed distributions are used to model large claims and losses. In this paper we deal with the empirical estimation of the distortion risk premiums for heavy tailed losses by using the extreme value statistics. This approach can produce a potential bias in the estimation. Thus we look at this framework here and propose a reduced-bias approach of the classical estimators already suggested in the literature. A finite sample behavior is investigated, both for simulated data and real insurance data, in order to illustrate the efficiency of our approach. Keyswords: Risk premiums · Distortion · Heavy-tailed distribution · Tail index · Extreme quantiles · Bias reduction

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixture of Normal Mean-Variance of Lindley Distributions

‎Abstract: In this paper, a new mixture modelling using the normal mean-variance mixture of Lindley (NMVL) distribution has been considered. The proposed model is heavy-tailed and multimodal and can be used in dealing with asymmetric data in various theoretic and applied problems. We present a feasible computationally analytical EM algorithm for computing the maximum likelihood estimates. T...

متن کامل

Estimation of parameters in heavy - tailed distribution when its second order tail parameter is known ∗ †

Estimating parameters in heavy-tailed distribution plays a central role in extreme value theory. It is well known that classical estimators based on the first order asymptotics such as the Hill, rank-based and QQ-estimators are seriously biased under finer second order regular variation framework. To reduce the bias, many authors proposed the so-called second order reduced bias estimators for b...

متن کامل

Estimating L-Functionals for Heavy-Tailed Distributions and Application

L-functionals summarize numerous statistical parameters and actuarial risk measures. Their sample estimators are linear combinations of order statistics L-statistics . There exists a class of heavy-tailed distributions for which the asymptotic normality of these estimators cannot be obtained by classical results. In this paper we propose, by means of extreme value theory, alternative estimators...

متن کامل

Adaptive Premiums for Evolutionary Claims in Non-life Insurance

Rapid growth in heavy-tailed claim severity in commercial liability insurance requires insurer response by way of flexible mechanisms to update premiums. To this end in this paper a new premium principle is established for heavy-tailed claims, and its properties investigated. Risk-neutral premiums for heavy-tailed claims are consistently and unbiasedly estimated by the ratio of the first two ex...

متن کامل

On the Estimation of the Second Order Parameter for Heavy-tailed Distributions

• The extreme-value index γ is an important parameter in extreme-value theory since it controls the first order behavior of the distribution tail. In the literature, numerous estimators of this parameter have been proposed especially in the case of heavy-tailed distributions, which is the situation considered here. Most of these estimators depend on the k largest observations of the underlying ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013